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Instability of a two-dimensional plane wall jet
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The effects of wall blowing or suction on the stability characteristics of a laminar
incompressible two-dimensional plane wall jet are investigated both experimentally
and theoretically. A quantitative comparison between linear stability calculations
and phase-locked experimental data, obtained when the wall jet is subjected to
two-dimensional excitations, confirms the co-existence of the viscous and inviscid
instability modes and the theoretically predicted effects of blowing and suction on
the stability of the wall jet. According to these predicted effects, blowing stabilizes
the inviscid mode while destabilizing the viscous one; suction has the opposite effect.
Furthermore, blowing and suction tend to increase and decrease, respectively, the
ratio between the outer and inner amplitude maxima of the streamwise velocity
fluctuation. When wall blowing is applied, the instability domain is enlarged and
includes higher-frequency waves. In addition, the region where both unstable modes
co-exist simultaneously begins at a lower local Reynolds number. Opposite effects are
caused when suction is applied. The quantitative comparison between the theory and
experiment includes the cross-stream structure and the downstream growth of the
streamwise velocity fluctuations. In order to accurately account for the effect of the
mean flow divergence in the stability analysis, the second-order corrections to the mean
flow solutions are obtained for all wall conditions. Spectral distributions, obtained
when natural wall-jets are subjected to blowing and suction, support qualitatively the
above results.

1. Introduction
In this work, the laminar-to-turbulent transition of a two-dimensional wall jet

is investigated. A wall jet is a thin jet of fluid that flows tangentially to a wall. It
consists of an inner region wherein the flow resembles the conventional wall boundary
layer and an outer region wherein the flow is like a free shear layer. The wall jet
is of considerable technological importance for applications like vertical take-off
aircraft, airfoil design, electronic cooling and paint spray. Owing to the low critical
Reynolds number, the flows in most applications are turbulent. Nevertheless, in some
applications (e.g. effective cooling) a controllable location of transition to turbulence
is required.

The mean flow of a laminar plane wall jet was first examined theoretically by
Tetervin (1948). By numerical integration of the governing equations, he obtained a
self-similar solution and predicted that the wall-jet thickness would increase as the 3/4
power of the downstream distance and that the velocity would decrease inversely as
the 1/2 power of the downstream distance. A similar mathematical solution, obtained
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in a closed analytical form, was later presented independently by Akatnov (1953) and
Glauert (1956). In addition, in a subsequent paper, Glauert (1958) showed that an
arbitrary distance can be added to the downstream coordinate without altering the
solution, which amounts to a shift of the virtual origin in the case of the plane wall
jet.

The temporal linear stability of a wall jet subjected to small wavy disturbances was
examined theoretically by Chun & Schwarz (1967). By solving the Orr–Sommerfeld
equation they showed that the critical local Reynolds number, Rcr , which is based on
the local boundary layer thickness and the local maximum velocity, is 57. They also
revealed the existence of a second unstable mode at higher Reynolds numbers.

Using hot-wire measurements in an air wall jet, Bajura & Szewczyk (1970) con-
firmed experimentally the theoretical findings of Tetervin, Akatnov and Glauert.
Furthermore, by subjecting the wall jet to two-dimensional excitations, they showed
that in the disturbance amplitude distribution there are two large peaks located in
the inner and outer regions of the wall jet. Since the amplification rate of the outer
peak was larger than that of the inner one, they concluded that the instability of the
whole jet is controlled by the outer region.

The dominance of the outer region was also reported by Bajura & Catalano (1975),
who investigated experimentally the transition to turbulence in two-dimensional plane
wall jets, using flow visualization in a water tunnel. They observed the following stages
in natural transition: (i) formation of discrete vortices in the outer shear layer; (ii)
coalescence of adjacent vortices in the outer region, coupled with the rolling up of
the inner shear layer; (iii) eruption of the wall jet off the surface of the flat plate into
the ambient fluid (the lift-off stage); (iv) dispersion of the organized flow pattern by
three-dimensional turbulent motions; and (v) re-laminarization of the upstream flow,
until another vortex pairing occurs. Their investigation showed that the initial stages
of transition are two-dimensional in nature, and are dominated by the mechanism of
vortex pairing, which is commonly observed in free shear flows. By subjecting the wall
jet to acoustic disturbances, they found that the forced transition is essentially similar
to natural transition, except for the elimination of the downstream intermittency and
the establishment of a fixed downstream location for transition.

The generation of the double-row vortical structure in the near field of a plane
wall jet was recently investigated experimentally by Hsiao & Sheu (1994) using
flow visualization and hot-wire measurements. They found that the induction of a
secondary vortex in the inner region is caused by the passage of a well-organized
primary vortex in the outer region. Further downstream, due to the growth in size
of the secondary vortex and the mutual interaction between primary and secondary
vortices, the primary vortex will be pushed into the outer low-speed region, while the
secondary vortex is pulled up into the high-speed region. Thereafter, the secondary
vortex will convect faster than the primary vortex and this will lead to the subse-
quent phenomenon of vortex lift-off from the wall surface. A very similar dynamic
picture was independently obtained by Gogineni, Shih & Krothpalli (1993) using PIV
measurements. In the light of this mechanism, Shih & Gogineni (1993) showed that
by using a low-frequency high-amplitude external excitation, the jet can be deflected
away from the wall and, consequently, the transitional process of the jet is accelerated.

In the above experiments, no supporting evidence was found with respect to the
co-existence of the two instability modes, revealed theoretically by Chun & Schwarz
(1967). Tsuji et al. (1977) associated the co-existence of the two instability modes
with the two inflection points in the streamwise mean velocity profile, one in the
outer region and the second on the wall. However, in their experiments, as was the
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case in the previous experiments mentioned above, the existence of the second mode
was not confirmed. Tsuji et al. attributed the absence of the second mode in their
experiment to the fact that the velocity profiles did not sufficiently agree with the
theoretical laminar profile found by Glauert. By calculating a pattern of streamlines
of a disturbed motion, they were the first to associate the formation of the double
row of vortices in the inner and outer layers with the linear stability theory. Using a
curve fit to their experimental mean velocity profiles, the experimental amplification
rates and distributions of the disturbance amplitude and phase compared well with
the calculated results of the linear theory. The growth of a subharmonic wave in
natural and forced wall jets, which was visualized by Bajura & Catalano (1975), was
also evident from the hot-wire measurements of Tsuji et al. (1977).

Mele et al. (1986) demonstrated theoretically that the low-frequency mode (large-
scale disturbances) is associated with the outer inflection point while the high-
frequency mode (small-scale disturbances) is related to the mean velocity gradient
in the vicinity of the wall. They showed that the unstable large-scale streamwise
disturbances have the highest values in the outer region, while the highest values of
the unstable small-scale disturbances are close to the wall. Hence, the outer inflection
point renders the flow vulnerable to large-scale oscillations, while the effects of viscous
instability seem to yield the amplification of the small-scale oscillations.

The possibility of the co-existence of the two instability modes was supported
experimentally by Amitay (1994) and Cohen, Amitay & Bayly (1992). Furthermore,
in order to control the relative dominance of each instability mode, Cohen et al.
(1992) investigated theoretically the effects of subjecting the wall jet to small amounts
of blowing or suction of fluid through the wall. They found a new family of laminar
self-similar solutions in which the streamwise velocity U, and the normal velocity at
the wall Vw , are given by

U(x, η) = (1− b)x1−2bf′ (η) ,

and

Vw(x) = −(1− b)f(0)x−b,

respectively, where the function f depends solely on the similarity variable, η, defined
by

η = (1− b)y/xb.
In the above expressions an arbitrary constant reference velocity scale, Ur , and a
constant length scale, ν/Ur , were used to render all variables dimensionless; ν is the
kinematic viscosity and x and y are the non-dimensional streamwise and transverse
coordinates, respectively. The self-similar solutions differ from one another only
in the power b. According to the values of b, or the more convenient parameter
γ = (2b − 1)/(1 − b), the family of self-similar solutions can be divided into three
regimes: suction with Vw < 0 for γ > 2; Glauert solution with Vw = 0 for γ = 2; and
blowing with Vw > 0 for 2 > γ > 1.

These self-similar profiles were later confirmed experimentally by Amitay & Cohen
(1993). By conducting temporal linear stability computations, using the above self-
similar solutions as the unperturbed laminar flow, Cohen et al. (1992) showed that
blowing stabilizes the inviscid mode while destabilizing the viscous one. The effect of
suction was found to be just the opposite.

The purpose of the research presented here is to understand the interaction between
the two different modes of instability supported by the wall jet. In the present work,
which is the first stage of the study, we are mostly concerned with the linear phase
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of the evolution of both modes. Using a small amount of surface velocity, it is
demonstrated that the relative dominance of each one of the wall jet’s modes can
be controlled. We intend to use this method as a controlling tool in the next stage
of the research wherein the coupling between the two modes will be investigated.
Furthermore, it is hoped that by demonstrating experimental control over the relative
dominance of each one of the wall jet’s modes, other physical phenomena, wherein
both types of instability co-exist simultaneously, will be better understood. One
example is the inflection point in a distorted laminar boundary layer; another example
is the separated boundary layer over a hump.

2. Experimental set-up

2.1. The wall-jet apparatus

The experiments were carried out in an open circuit air jet facility which consists
of a 2 HP variable-speed centrifugal blower, a noise reduction chamber, a diffuser,
and a settling chamber having one honeycomb and three screens followed by a
contraction nozzle. The jet nozzle has an area contraction ratio of 30, and its shape
fits a fifth-order polynomial profile. At the exit plane the height is 20 mm and the
width is 600 mm. To improve the two-dimensionality of the incoming flow, a 20 mm
by 600 mm metal strip was mounted spanwise at the downstream outer end of the
nozzle along its top (that is, away from the wall). The strip was attached by a set of
screws placed every 20 mm to provide a fine adjustment of the jet-exit height along
the spanwise direction. The range of operating Reynolds number based on the jet-exit
height and jet-exit velocity was between 125 and 466. The turbulence intensity at the
nozzle-exit centre was less than 0.2%.

In order to control the amount of blowing or suction to which the wall jet was
subjected, an apparatus consisting of a porous plate and a supporting box was built
(figure 1a). According to previous theoretical results (Cohen et al. 1992), the required
amount of injection (or suction) is a non-uniform function of the wall-jet streamwise
direction. The box was therefore divided into two-dimensional cells. Each one could be
subjected to a different and controlled pressured air flow or low vacuum for blowing
or suction, respectively (see figure 1b). A detailed description of the apparatus and
the method used to adjust the wall suction or blowing conditions, is given in Amitay
(1994) and Amitay & Cohen (1993). It should be noted that measuring the normal
velocity of the flow entering each cell is difficult because it is so low; in the sets
of measurements reported here, the predicted normal velocity at the wall surface in
the first cell is less than 2 cm s−1, two orders of magnitude smaller than the jet-exit
velocity.

To observe the behaviour of small wavy disturbances under well-defined conditions,
the wall-jet was artificially excited by vibrating a two-dimensional flap. The flap was
placed 10 mm above the jet-exit upper side and extended 8 mm downstream of the
jet-exit plane.

The measurements of the streamwise velocity were conducted using a standard
Disa Model 55P11 single hot-wire probe with a 5 µm diameter tungsten sensor. The
hot wire was kept at an overheat ratio of 1.6 and had a maximum frequency response
of 30 KHz. It was calibrated in the exit plane of an axisymmetric jet, especially
built for this purpose, against a standard Pitot tube used in conjunction with a
MKS BARATRON model 398HD pressure transducer tube. Seven velocities were
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Figure 1. A schematic side-view of (a) the blowing and suction apparatus
and of (b) one of its cells.

used for calibration. The raw data signals from the hot-wire anemometer and the
BARATRON pressure transducer were acquired using a 486 PC.

The computer has eight differential channels of 12 bit Analog to Digital converters
available for data acquisition with a maximum aggregate sample rate of 200 KHz.
In addition, the computer is equipped with six channels of 12 bit Digital to Analog
converters with a maximum aggregate output rate of 120 KHz. The D/A converters
were used to generate sine wave forcing signals which were passed through an
amplifier and then onto the mechanical vibrator which activated the two-dimensional
flap. In addition, the computer controlled the positioning of the hot-wire probe via
three stepper motors. The probe was mounted on a three-axis traversing mechanism
which had a resolution of 5 µm in all three directions.

2.2. Phase-locked data

In order to retain phase information, the excitation signal was recorded in addition
to the velocity signal. The hot-wire and function generator records, consisting of
256 points each, were digitized at a sampling frequency which was 35 times higher
than the frequency of the excited wave, giving a cyclic resolution of 10◦ relative to
the fundamental component of the phase-locked signal. To save time and computer
memory, we distinguished between linear and nonlinear regions. In the linear region
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the power spectrum of the ensemble-averaged velocity signals was almost identical
to the averaged power spectra of all individual periods, and consequently the data
acquisition procedure could be sped up. At each measuring point, 600 events were
recorded and an ensemble average was formed. The fluctuating velocity was obtained
by subtracting the local mean velocity from the ensemble signal, from which amplitude
and phase of the disturbance were then obtained by using a direct Fourier transform.
On the other hand, in the nonlinear region, the amplitude and phase of the disturbance
were obtained for each period and were only then averaged. Unless noted otherwise,
the level of forcing was defined as the maximum amplitude of the Fourier component,
at the excitation frequency, of the streamwise velocity fluctuation normalized by the
jet exit velocity and measured at 25 exit heights downstream of the exit plane.

3. Instability computations
To assess the effects of blowing or suction on the stability of the wall jet, the

Orr–Sommerfeld equation for small wavy disturbances was solved numerically. This
is a standard procedure, which was used by Cohen et al. (1992) for the temporal case.
However, since we intend to compare the numerical calculations and the experimental
results, the more appropriate spatial approach is used here to describe the growth of
convective instabilities. As was shown by Gaster (1962) for small rates of amplification,
and by Nayfeh & Padhye (1979) using the method of multiple scales, the spatial growth
is related to the time growth by the group velocity.

The local linear stability analysis assumes that the mean flow can be considered
locally parallel. This assumption is justified when the ratio between the transverse and
the streamwise mean velocities is small. In the present case the ratio is proportional to
the inverse of the local Reynolds number, R−1

δ , where Rδ = Umδ/ν ∝ x1/(γ+2), where
Um is the local maximum velocity and δ is the local thickness of the boundary layer,
defined as the distance from the wall to the point where the velocity is one half the
maximum in the outer region of the flow.

The effect of blowing and suction on the instability waves can be appreciated by
considering the eigenvalues of the Orr–Sommerfeld equation corresponding to three
values of γ. The exponential growth rates (−α̃i) and phase velocities (C̃ph) of the waves
calculated at a local Reynolds number of Rδ = Umδ/ν = 150 are plotted against their

non-dimensional angular frequencies β̃ in figures 2(a) and 2(b) respectively. The
relevant scales Um and δ are used to render all variables dimensionless. Three cases,
representing the suction (γ = 3), Glauert (γ = 2) and blowing (γ = 1.5) solutions,
are shown. Blowing tends to destabilize the small-scale (high-β̃) disturbances but
stabilizes the larger scales (small β̃) while suction does the opposite. Similar results
calculated at a local Reynolds number of 800 are presented in figure 3. At this
relatively high local Reynolds number, the instability mode is clearly separated into
two modes having two different dispersion relations. Blowing tends to destabilize the
small-scale (high-frequency) disturbances but stabilizes the larger scales. The effect of
suction is just the opposite.

The neutral stability curves (α̃i = 0), corresponding to these three wall conditions,
are shown in figure 4(a), where β̃ is plotted versus Rδ . For each case, three regions
of instability can be distinguished: region I where only a single mode is unstable;
region II where two unstable modes correspond to two different bands of frequencies
and region III where two bands of unstable modes have an overlapping region in
which two waves have the same frequency, but different eigenvalues. These regions
are indicated in figure 4(a) only for the Glauert case. Representative amplification
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Figure 2. (a) Spatial amplification rate α̃i and (b) phase velocity C̃ph versus non-dimensional

frequency β̃ at Rδ = 150 and for γ = 1.5 (blowing), γ = 2 (Glauert) and γ = 3 (suction).
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Figure 3. As figure 2 but at Rδ = 800.

curves corresponding to each of the instability regions are shown in figures 4(b–d),
for γ = 2.

As can be seen, when blowing or suction are applied, region III begins at a lower
or a higher local Reynolds number, respectively. Furthermore, the instability regions
above and below (with respect to frequency) region III are increased and decreased,
respectively, when blowing is applied. The effect of suction is just the opposite. This
is related to the fact that blowing tends to destabilize the high-frequency waves and
to stabilize the lower-frequency ones.

4. Comparison between theory and experiments
Although a detailed comparison between the self-similar mean flow solutions and

measurements has already been presented by Amitay & Cohen (1993), we include
here one example thereof which is relevant in explaining some of the issues discussed
in the following sections. Throughout the mean flow experiments, five different values
of γ were used, corresponding to two levels of wall blowing with γ = 1.5 and 1.7, two
levels of wall suction with γ = 2.3 and 3, and the case in which no blowing or suction
was applied (γ = 2). A right-handed coordinate system is defined with X̂, Ŷ , Ẑ as the
downstream, wall-normal and spanwise (parallel to the wall) directions, respectively,
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with Û, V̂ and Ŵ being the corresponding velocity components. All quantities with
carets are dimensional.

The mean profiles of the streamwise velocity measured when the jet-exit Reynolds
number was Rj = 466, based on the jet-exit velocity Uj = 7 m sec−1 and jet-exit
width H = 1.0 mm, are plotted in dimensional coordinates in figure 5. The full
profiles at X̂/H = 30 are displayed in figure 5(a), while the corresponding inner
layers are shown in greater detail in figure 5(b). The various symbols represent
the measurements obtained at different wall conditions and the solid lines are the
corresponding theoretical solutions.

The downstream development of the local maximum velocities and the local bound-
ary layer thicknesses at Rj = 466 are shown in figures 6(a) and 6(b), respectively.
The small vertical arrows in figure 6(a) indicate the last streamwise locations where
the measured profiles conformed to the laminar solutions. The agreement between
the measurements and the theoretical solutions is very good, indicating that the
correct streamwise distributions of the normal velocity at the wall were obtained.
Accordingly, the ratio between the wall-normal velocity and the jet-exit velocity at
the jet-exit plane is approximately 0.25% for blowing with γ = 1.5 and −0.27% for
suction with γ = 3. As is evident from the self-similar solution, this ratio decreases
with downstream distance as (X̂ − X̂0)

−(γ+1)/(γ+2), where X̂0 is a constant shift in the
streamwise direction (virtual origin).

Similar results (see Amitay 1994 and Amitay & Cohen 1993) for Rj = 180 and 270
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indicate that the non-dimensional downstream distances X̂/H where the measured
profiles conformed to the theoretical ones, are increased as the jet-exit Reynolds
number is decreased.

4.1. Instabilities in natural wall jet

In order to examine the effects of blowing and suction on the evolution of instabilities
in natural wall jets, experimental power spectra corresponding to wall conditions of
γ = 3, 2 and 1.7, are examined in relation to the trends predicted by the linear stability
theory. The spectral distributions correspond to measurements obtained in the inner
and the outer regions of the boundary layer, where the mean velocity equals 0.55
(Ŷ55 ) and 0.80 (Ŷ80) of the maximum velocity, respectively, and at several streamwise
positions between X̂/H = 25 to 60. The jet-exit velocity and width were Uj = 7 m s−1

and H = 1 mm, respectively, which resulted in a jet-exit Reynolds number of 466.
For the Glauert case, the local Reynolds numbers were approximately 500 and 580 at
the first and last streamwise locations, respectively. When blowing and suction were
applied, the corresponding local Reynolds numbers were 570 to 650 and 430 to 490,
respectively.

The disturbances’ exponential growth rates for γ = 3, 2 and 1.7 are plotted against
their non-dimensional frequencies in figure 7. For the case of γ = 2 the calculations
were carried out at two local Reynolds numbers of 500 and 580, corresponding
approximately to the lower and upper limits of the experimental values. There
is a slight difference between the eigenvalue distributions associated with the two
Reynolds numbers. Thus, in conjunction with the qualitative comparison between the
experimental results and the local stability calculations, the effect of the streamwise
variation of the local Reynolds number is secondary. The Reynolds number used
in the calculations of the eigenvalues for γ = 3 and 1.7 was chosen to be between
the two local Reynolds numbers measured at the first and last streamwise locations.
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Accordingly, the corresponding local Reynolds numbers for γ = 3 and 1.7 are
Rδ = 450 and 600, respectively.

The spectral distributions measured at two streamwise locations and at two dis-
tances from the wall where Ŷ = Ŷ55 and Ŷ = Ŷ80 are shown in figure 8 for the three
wall conditions mentioned above. The first streamwise position for all cases presented
in figure 8 is X̂/H = 25, while the further downstream positions corresponding to

γ = 3, 2 and 1.7 are X̂/H = 60, 40 and 40, respectively. This choice of the second
streamwise position is due to the difference in the spectral spatial evolution associated
with the three wall conditions.

In the following, we attempt to relate qualitatively the spectral measurements
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presented in figure 8 to the amplification curves shown in figure 7. It is not intended
to quantitatively validate experimentally the theoretical predictions but rather to show
the consistency between the two. It should be noted that although for the Glauert
and suction cases a clear distinction between the inviscid and viscous modes was
better observed at a higher jet-exit Reynolds number, these results are not presented
here since the mean flow under these conditions did not conform to the laminar
solution when blowing (γ = 1.7) was applied. In all cases shown in figure 8, the
magnitude of the spectra at Ŷ55 is higher than that obtained at Ŷ80 for the range
of β̃ = 2πfδ/Um approximately between 0.8 and 2.2, where f is the dimensional

frequency. For lower frequencies (0 < β̃ < 0.4) the magnitude of the spectra at Ŷ55 is
lower than that obtained at Ŷ80. This trend is consistent with the prediction of the
linear stability theory (see figure 9 below and Cohen et al. 1992), according to which
the high-frequency viscous mode (in the range of β̃ approximately between 0.8 and
2.2) dominates the inner region, while the low-frequency inviscid mode prevails in the
outer region.

By comparing figures 8(a) and 8(e), it is evident that the bandwidth of frequencies
associated with the viscous mode is wider for blowing and narrower for suction, a
trend anticipated from the corresponding exponential growth rates shown in figure
7. Moreover, in accordance with the theoretical results presented in figure 7, the
initial growth of the high-frequency viscous mode is higher when blowing is ap-
plied and lower when suction is applied. Experimentally, this can be deduced by
comparing the power of the corresponding spectral distributions at the first stream-
wise position shown in figures 8(a) and 8(e) (assuming that their initial spectra
are almost identical), or by comparing power spectra growth between the first and
second streamwise locations for both modes (figures 8a, b and 8e, f, respectively).
Finally, the most energetic waves are associated with the low-frequency inviscid mode
when suction is applied, and with the high-frequency viscous mode when blowing is
applied.
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(outer region, dashed lines), for γ = 3, 2 and 1.7. The local Reynolds numbers are: (a) 434, (b) 488,
(c) 515, (d) 549, (e) 569 and (f) 611.

4.2. Comparison of the forced wall-jet data with linear stability analysis

In this subsection, the structure and evolution of two-dimensional streamwise distur-
bances are studied under controlled conditions. Different disturbances were introduced
into the flow by vibrating a two-dimensional flap at various frequencies and ampli-
tudes. Phase-locked data were measured, analysed and compared with the theoretical
predictions of the linear stability theory.

First, the spanwise uniformity of the fundamental component of the excited wave,
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when the jet was subjected to three wall conditions (γ = 2, 3 and 1.7), was characterized
by applying a two-dimensional Fourier transform to phase-locked velocity signals
measured at several downstream positions and at 1 mm intervals over a span of
60 mm. It was found (see Amitay 1994) that the two-dimensionality of the fundamental
component prevails throughout the boundary layer. Therefore, the development of
the fundamental component in the following subsections will be analysed based upon
phase-locked data measured along the centreline.

4.2.1. The effect of blowing and suction on the cross-stream distribution of the
streamwise disturbance

The normalized modulus of the fluctuating streamwise velocity |ũ| at a local
Reynolds number of Rδ = 469 and for three values of γ corresponding to Glauert
(γ = 2), suction (γ = 3) and blowing (γ = 1.5), are plotted in figure 9. For large-scale
inviscid disturbances (β̃ = 0.431) the maximum of the amplitude distribution is in
the outer region (figure 9a), while for small-scale viscous disturbances (β̃ = 0.972)
the maximum is close to the wall (figure 9b). The amplitudes were normalized by
the values of the outer and inner maxima in figures 9(a) and 9(b), respectively.
The non-dimensional frequencies of the excited waves were chosen to correspond
approximately to maximum growth of the waves above and below region III (the
region in which two amplified waves co-exist simultaneously, see figure 4). Thus,
for each of the forced waves, only a single mode could be amplified, according to
linear stability theory. The lines are the theoretical eigenfunctions for γ = 1.5, 2 and
3 while the symbols are the corresponding phase-locked results when the wall jet
was subjected to two-dimensional excitations. In all cases, the agreement between the
theory and the experiments is fairly good, except for two regions: the outer region
wherein the streamwise mean velocity is less than 10% of the local maximum velocity,
and the valley between the two main maxima of the eigenfunction, the height of which
is overpredicted by the theory.

The above results suggest that the small-scale disturbances are associated with the
viscous shear layer mode, while the large-scale ones are associated with the outer
inviscid instability. These results are in agreement with previous calculations done by
Mele et al. (1986) for a plane wall jet where neither suction nor blowing were applied.
As is predicted by the theory and confirmed experimentally, blowing and suction tend
to increase and decrease, respectively, the ratio between the outer and inner amplitude
maxima for both the high- and low-frequency modes. This is related to the increase
and decrease of the slope of the mean velocity profile at the wall when suction and
blowing are applied (see figure 5). It should be noted that the experimental results for
the three cases presented here were obtained at different jet-exit conditions so that
the local Reynolds number and the non-dimensional frequency at X̂/H = 30 were
the same.

In order to characterize the stability of the wall jet, the streamwise evolution of
the disturbances in the following four regions were examined (see figure 4): region I,
above region III, across region III and across region II .

4.2.2. Region I

In region I only a single mode exists. The measured cross-stream distributions of the
fundamental component of the streamwise velocity fluctuations at three downstream
locations where X̂/H = 50, 70 and 90, are shown in figures 10(a), 10(b) and 10(c)
and compared with theoretical computations for γ = 2, 3 and 1.7, respectively. The
symbols represent the measured phase-locked data, while the solid lines are the
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Figure 9. The normalized modulus |ũ| at X̂/H = 30, Rδ = 469. (a) β̃ = 0.431 and (b) β̃ = 0.972. The
symbols represent the experimental data while the lines are the corresponding theoretical solutions:
– – –, �, γ = 1.5, ——, ◦, γ = 2; · · · · · · , +, γ = 3.

corresponding theoretical results. For all cases the jet-exit velocity was Uj = 2.5 m s−1,
the jet-exit height was H = 0.75 mm, the forcing frequency was fex = 40 Hz and
the maximum amplitude of the streamwise disturbance at X̂/H = 30 was 0.16%
of the jet-exit velocity. Under these experimental conditions, the non-dimensional
forcing frequency throughout the entire measured downstream domain corresponded
to region I. Although the experimental conditions were the same for all cases, the
non-dimensional local frequency when suction was applied was higher than the
corresponding frequency when no blowing or suction were applied, whereas the value
of the local Reynolds number was lower. When blowing was applied, these trends
were just the opposite.

The experimental data follow the trends predicted by the linear stability theory,
according to which the ratio between the inner and outer maxima of the streamwise
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eigenfunctions increases with downstream distance, while the ratio between the width
of the disturbed region and the local boundary layer thickness decreases. These are
not surprising results since as the downstream distance increases, so does the non-
dimensional frequency β̃ and consequently smaller scales, governed by the near-wall
region, become more dominant.

In order to compare the measured streamwise amplification of the disturbance with
the theoretical prediction, the method of multiple scales to account for the mean
flow divergence and to describe the growth of a two-dimensional wave disturbance
in boundary layers was applied to wall-jet flows. In this approach (see for example
Bouthier 1973; Gaster 1974; Saric & Nayfeh 1975) one uses the amplitude distribu-
tions of the parallel theory as a first approximation for an extension of the theory to
include non-parallel effects. The results of the direct numerical simulation carried out
by Fazel & Konzelmann (1990) clearly show that the application of this approach to
a laminar boundary layer is well justified.

In the comparisons described below, the multiple scales procedure, used successfully
by Cohen (1994) to describe the initial growth of a wave packet in a laminar boundary
layer, is applied to wall-jet flows. However, unlike the case of conventional boundary
layer flows in which the second-order boundary layer corrections of the mean flow can
be neglected, in wall-jet flows these corrections are of the same order of magnitude
as the other terms associated with the divergence of the mean flow and therefore
must be included in the analysis. In the Appendix the second-order correction to the
Glauert wall-jet solution found by Plotkin (1970) is generalized to include the cases
when the wall jet is subjected to wall blowing and suction.

The streamwise growth of the disturbance measured at two vertical locations
Ŷ = Ŷ55 and Ŷ = Ŷ80 is shown for γ = 2 (11a), γ = 3 (11b) and γ = 1.7 (11c). The
lines are the corresponding predictions of the linear stability theory at Ŷ55 and Ŷ80.
The amplitudes were normalized with respect to their values at the first measured X̂
location. For each value of γ the amplification of the disturbance in the inner region
is greater than that in the outer region. This is directly related to the ratio between
the inner and outer maxima of the eigenfunction, which as mentioned above increases
with downstream distance. The agreement between the theoretical predictions and
the experiments in all cases is good. As predicted by the theoretical amplification
curves (see also figure 2) and confirmed experimentally, the initial amplification of
the disturbance when suction or blowing are applied is larger or smaller, respectively,
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(b) γ = 3 and (c) γ = 1.7.

than that corresponding to γ = 2, whereas the opposite trend is observed at distances
further downstream.

4.2.3. Above region III

In the domain above region III (with respect to figure 4) the viscous mode is the
prevailing one. To follow the evolution of this mode experimentally, the following
set of parameters was used: the jet-exit velocity was 2.9 m s−1, the jet-exit height
2.4 mm, the forcing frequency 80 Hz and the maximum amplitude of the streamwise
disturbance at X̂/H = 25 was 0.16% of the jet-exit velocity. The cross-stream
distributions of the streamwise velocity fluctuations at three downstream locations
(X̂/H = 25, 50 and 60) are shown in figures 12(a) and 12(b) for γ = 2 and 3,
respectively. The agreement between the theoretical results (solid lines) and the
experiments (symbols) is good. The streamwise eigenfunctions follow the same trend
as in region I: the ratio between their inner and outer maxima increases with
downstream distance, while the ratio between the width of the disturbed region and



Instability of a two-dimensional plane wall jet subjected to blowing or suction 83

1.0

(a)

N
or

m
. |

u
|

~

Y/dˆ

(b)

0 0.5 1.5 2.0

X/H = 25

50

60

0.8

0.6

0.4

0.2

1.0

Y/dˆ
0 0.5 1.5 2.0

1.0

0.8

0.6

0.4

0.2

1.0
ˆX/H = 25

50

60

ˆ
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distributions of |ũ| at three downstream locations and at Rj = 466. (a) γ = 2 and (b) γ = 3.

the local boundary layer thickness decreases. Similar results were obtained (but are
not shown here) for the case in which blowing was applied. For this case the distance
upstream of which the mean flow conformed to the laminar solution was relatively
shorter, X̂/H ≈ 40 and 45 for γ = 1.5 and 1.7, respectively (see figure 6).

The downstream developments of the streamwise disturbance for four values of
γ = 1.5, 1.7, 2 and 3, measured at Ŷ = Ŷ80 are shown in figure 13. Except for the case
in which γ = 1.5, the symbols represent measurements obtained when the disturbance
level at X̂/H = 25 was |ũ|max/Uj = 0.16%, 0.27% and 0.37%, respectively, while the
dashed lines are the normalized theoretical predictions. For the case in which a high
level of blowing was used (γ = 1.5), the power of spectral distribution of the unforced
flow was relatively very high. Therefore higher levels of excitations were used and
consequently the initial disturbance levels as measured at X̂/H = 25 were 1.67%,
2.27% and 3.1%, respectively.

For the Glauert and the suction cases the experimental amplitudes follow the theo-
retical amplification curves, although the experimental amplitudes are slightly greater
than the predictions of the linear theory. Furthermore, throughout the downstream
domain for the suction and Glauert cases the three sets of the experimental results,
corresponding to the three levels of excitation used, collapse on a single curve indi-
cating that nonlinear effects are negligible. When blowing was applied, the measured
amplitudes were higher than or equal to the theoretical predictions only for a short
streamwise distance (where nonlinear effects were still insignificant), beyond which a
sharp decrease in their values was observed. This behaviour is related to the laminar-
to-turbulent transition location of the natural wall jet. As mentioned before in relation
to figure 6, the transition begins at X̂/H ≈ 40 and 45 for γ = 1.5 and 1.7, respectively.
These positions correlate well with the corresponding locations where the amplitudes
of the forced waves begin to depart sharply from the theoretical amplification curves.

4.2.4. Across region III

In region III the inviscid and viscous modes co-exist simultaneously, i.e. both modes
have the same frequency but different eigenvalues and eigenfunctions. Thus, the
fundamental component of the measured phase-locked data contains a combination
of both modes. In order to decompose the experimental signals according to their
respective contributions, we followed the method proposed by Tumin et al. (1996),
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when the disturbance level at X̂/H = 25 was |ũ|max/Uj = 0.16%, 0.27% and 0.37%, respectively,
while for case (c) the corresponding disturbance levels were 1.67%, 2.27% and 3.1%, respectively.

who applied the bi-orthogonal eigenfunction system, formulated by Zhigulev & Tumin
(1987) to analyse such cases in transitional boundary layers and wall jets.

To follow the evolution of both modes across region III, the following set of
experimental parameters was used: the jet-exit velocity was 7 m s−1, the jet-exit height
1 mm, the forcing frequency 180 Hz and the maximum amplitude of the streamwise
disturbance at X̂/H = 25 was 0.16% of the jet-exit velocity. Under these experimental
conditions the non-dimensional forcing frequency for γ = 2 corresponded to the
region below region III at the first downstream station. Three cases, representing
suction (γ = 3), Glauert (γ = 2) and blowing ( γ = 1.7), were measured. Although the
experimental conditions were the same for all three cases, the local Reynolds numbers
obtained for the suction and blowing cases were lower and higher, respectively, than
that of the Glauert one. Moreover, since for γ = 3 the Reynolds number indicating the
beginning of region III shifted towards a higher value (see figure 4), the corresponding
domain of β̃ versus Rδ was within region I and therefore will not be presented here.
On the other hand, the effect of blowing was to shift the first measured downstream
position to a point within region III.

The measured amplitude and phase distributions of the streamwise velocity fluc-
tuations at three downstream locations for γ = 2 are shown in figure 14(a–f) and
compared with theoretical computations of the viscous and inviscid modes. As can
be seen, the experimental data do not fit either of them. However, the experimental
amplitude and phase distributions agree well with the corresponding theoretical dis-
tributions (solid lines) based on the weighted contributions of both modes as obtained
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Figure 14. The amplitude and phase cross-stream distributions of ũ at Rj = 466, γ = 2 and three
downstream locations. The symbols correspond to the experimental data, the dotted lines to the
theoretical distributions of the viscous mode, the dashed lines to the theoretical distributions of the
inviscid mode and the solid lines to the theoretical distributions based on the weighted contributions
of both modes.



86 M. Amitay and J. Cohen

(a)

N
or

m
. |

u
|

~

X/Hˆ

(b)

20 40 60 80
0.1

1.0

10

N
or

m
. |

u
|

~

0.1

1.0

10

Figure 15. Comparison between the measured (symbols) and theoretical (solid lines) downstream
development of (a) the viscous mode and (b) the inviscid mode of |ũ| measured at Rj = 466, γ = 2
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using the above mentioned decomposition method (Tumin et al. 1996). The maximum
values of the latter were used to normalize all of the theoretical and experimental
distributions.

After decomposing the experimental signals, the downstream development of each
mode measured at Ŷ = Ŷ55 was found and compared to the theoretical prediction.
This downstream development is shown in figures 15(a) and 15(b) for the viscous
and inviscid modes, respectively. While the measured amplitude of the inviscid mode
follows the theoretical amplification curve quite accurately, there is a severe difference
between the experimental data and the theoretical prediction with respect to the
viscous mode. In fact, the two show opposite trends.

A typical decomposition of the two modes, obtained when wall blowing (γ = 1.7)
was applied, is presented in figure 16 which follows the same structure as in figure
14. As in the case of γ = 2, the experimental amplitude and phase distributions
do not fit either of the two theoretical modes, while they are fairly well described
by the linear stability theory when the orthogonalization decomposition method is
used.

4.2.5. Across region II

In this subsection, the evolution of the excited wavy disturbances across region II
(see figure 4) is briefly discussed. According to the linear stability theory, below region
II (low frequencies) only the inviscid mode is unstable. In region II itself both modes
are stable, whereas above region II (high frequencies) only the viscous mode should
be amplified. However, when following the evolution of an excited instability wave
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X̂/H = 30. The symbols correspond to the experimental data, the dotted lines to the theoretical
distributions of the viscous mode, the dashed lines to the theoretical distributions of the inviscid
mode and the solid lines to the theoretical distributions based on the weighted contributions of
both modes.

with downstream distance, the upstream-integrated contribution of the inviscid mode
cannot be neglected. Therefore, at distances close to the upper branch (with respect
to β̃) of region II, we expect the contribution of both modes to be significant and
only further downstream should the viscous mode prevail.

The measured amplitude distributions of the streamwise velocity disturbance at
three downstream locations are shown in figure 17(a–c) and compared with theoretical
computations. In these experiments the jet-exit velocity and height were 3 m s−1 and
0.9 mm, respectively, the forcing frequency was 40 Hz and blowing with γ = 1.5
was applied. In accordance with the prediction of the linear theory, below region II
(X̂/H = 30) the experimental data fit the theoretical distribution of the inviscid mode,

while at X̂/H = 70, much above region II (high β̃), the viscous mode dominates.

Both modes become significant just above region II (X̂/H = 40) where only a proper
decomposition of their weighted contributions (the solid line in figure 17b) can recover
the experimental eigenfunction. The downstream growth of both modes (see figure
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18) approximately follows the trends predicted by the linear stability theory. Similar
results (not shown here) were obtained for the Glauert wall condition.

5. Summary and conclusions
This paper, focused on the development of the two instability modes during the

initial stages of transition and on understanding how small amounts of blowing
and suction can be used to control their relative dominance. In this section we first
discuss some of the observations found in this work and when possible relate them
to previous studies. We then summarize the effects of a small amount of wall blowing
and suction on the evolution of the two instability modes.

During the initial stages of transition, the disturbed flow field of the wall jet
consists of a double row of counter-rotating vortices, associated with the wall jet’s
inner and outer shear layers (Bajura & Catalano 1975; Gogineni et al. 1993; Hsiao
& Sheu 1994). This vortical structure is reflected in the theoretical and experimental
cross-stream distributions of the disturbance streamwise velocity of the inviscid and
viscous modes. In the phase distribution of their streamwise velocity fluctuations (see
the dotted and dashed lines in figure 14b) there are two approximately 180◦ sharp
jumps, whereas the corresponding amplitude distributions (figure 14a) include three
maxima. Similar experimental distributions were observed by Tsuji et al. (1977) and
Zhou, Rothstein & Wygnanski (1992). The locations of the two sharp jumps in phase
correspond to distances from the wall where the streamwise fluctuation changes sign
and the cross-stream fluctuation reaches its maximum amplitude. Thus, together with
the locations of zero velocity dictated by the boundary conditions at the wall and far
away from it, the cross-stream distribution of the streamwise velocity fluctuation has
four minima and three maxima. The two inner maxima are significantly larger than
the outer one and their locations are approximately at distances from the wall where
the phase velocity of the disturbance equals the local streamwise mean velocity.

The stability map of the wall jet includes three distinct regions: region I where only
a single mode is unstable, region II where two unstable inviscid and viscous modes
correspond to low- and high-frequency bands, respectively, and region III where the
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development of (a) the viscous mode and (b) the inviscid mode of |ũ| measured at Rj = 270, γ = 1.5

and Ŷ = Ŷ55.

two bands of unstable modes have an overlapping region in which two waves have
the same frequency, but different eigenvalues.

In accordance with the theoretical calculations, phase-locked experimental data,
obtained when the wall jet was subjected to two-dimensional excitations, show that
for large-scale disturbances the maximum of the amplitude distribution is at the
outer region, while for small-scale disturbances the maximum is close to the wall.
These results suggest that the small-scale disturbances are associated with the viscous
boundary layer mode, while the large-scale ones are associated with the outer inviscid
shear layer.

The possibility of the co-existence of the two instability modes was supported
experimentally by Cohen et al. (1992) in natural jets and by Zhou et al. (1992) using
phase-locked measurements in forced wall jets. In the latter case, however, the authors
were able to follow the evolution of only a pure mode (inviscid or viscous) over a
limited spatial distance by a careful selection of the parameters in their experiment. In
this paper, using the decomposition method proposed by Tumin et al. (1996) we were
able to uncouple the two modes and follow their evolution throughout the various
regions of the stability map, and in particular across region III and across region II
where the flow is dominated by both modes.

Theoretical cross-stream distributions of the streamwise disturbance, calculated
for the various regions of the stability map, agree very well with phase-locked
experimental data. The experimental data follow the trends predicted by the linear
stability theory, according to which the ratio between the inner and outer maxima
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of the streamwise eigenfunctions increases with downstream distance, while the ratio
between the width of the disturbed region and the local boundary layer thickness
decreases. These results are related to the increase of the non-dimensional frequency
with downstream distance.

In order to compare the measured streamwise amplification of the disturbance
with the theoretical prediction, the method of multiple scales was used to account
for the mean flow divergence and to describe the growth of a two-dimensional wave
disturbance in wall-jet flows. For this purpose, the second-order corrections to the
mean flow solutions had to be obtained for all wall conditions. It should be noted
that for the Blasius laminar boundary layer, the second-order corrections can be
neglected. The mean flow divergence of the wall jet has a significant effect on the
downstream evolution of a wavy disturbance having a fixed frequency. This is a result
of the relatively strong streamwise variation of the corresponding non-dimensional
frequency. For example, for a wall-jet flow over a solid surface (γ = 2), the non-
dimensional frequency varies as ∼ X̂5/4, two and a half times its rate in a laminar
boundary layer over a flat plate.

A quantitative comparison between the theory and experiment shows that the
downstream growth of the streamwise velocity fluctuations is well predicted by the
theory only when the flow is dominated by a single mode (inviscid or viscous).
When both modes co-exist in the flow, the agreement between the theoretical and
experimental results is in general reasonable (excluding the case presented in figure
15a), but not as good as the case in which a single mode dominates the flow. The
reason for this might be the limited ability of the bi-orthogonal decomposition method
to precisely resolve the experimental signals into the respective contributions of the
two modes. In this regard, it should be noted that the decomposition method assumes
that the mean flow is parallel and that only two modes are present in the flow.

In the case associated with the streamwise evolution of the viscous mode across
region III (see figure 15a), there is a severe difference between the experimental data
and the theoretical prediction which follow opposite trends. In an attempt to explain
this disagreement we note that among the various sets of experiments reported in
this paper, the set associated with figure 15(a), is the one in which the highest jet-
exit velocity (7 m s−1) and dimensional excitation frequency (180 Hz), were used. We
suspect that under these relative extreme experimental conditions, the screen used as
the jet’s wall was no longer at rest, but weakly forced to vibrate at the high excitation
frequency. Consequently, there was some kind of interaction between the vibrating
screen and the short-wavelength viscous mode which led to its rapid streamwise
growth. In the future we plan to investigate this type of interaction.

In order to control the relative dominance of each of the instability modes, the
wall jet was subjected to a small amount of wall blowing and suction. Mean flow
calculations and measurements show that the direct effect of the wall suction and
blowing is to increase and decrease, respectively, the slope of the streamwise mean
velocity profile at the wall. Consequently, as predicted by the linear stability theory
and confirmed experimentally, blowing and suction tend to increase and decrease, re-
spectively, the ratio between the outer and inner amplitude maxima of the streamwise
velocity fluctuation.

Measurements obtained in natural and forced wall jets confirm the theoretical
predictions that the initial growth of the viscous mode is higher when blowing is
applied and lower when suction is applied, whereas the bandwidth of frequencies
associated with the the unstable viscous mode is wider for blowing and narrower for
suction. In addition, when blowing is applied the region where both unstable modes



Instability of a two-dimensional plane wall jet subjected to blowing or suction 91

co-exist begins at a lower local Reynolds number. This, together with the fact that
blowing destabilizes the short-wavelength viscous mode (see figure 3a), might explain
the rapid transition observed in natural wall-jets subjected to wall blowing (see figure
6). Opposite effects are caused when suction is applied.
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Appendix
In this Appendix, the second-order correction to the wall-jet mean flow solution,

when the jet is subjected to wall suction or blowing, is obtained. This solution is a
generalization of the second-order solution found by Plotkin (1970) for the Glauert
wall jet. The equation for the two-dimensional stream function ψ is given by[

ψy(∂/∂x)− ψx(∂/∂y)− (1/R)∇2
]
∇2ψ = 0, (A 1)

where R is the Reynolds number based on an arbitrary reference velocity, Ur , and
length scale, Lr , which were used to render all variables dimensionless. Using the
method of matched asymptotic expansions (Van Dyke 1975), we assume straightfor-
ward expansions for the outer inviscid and inner viscous fields, respectively.

First-order problem

Since the upstream outer flow is negligible, the first term of the outer inviscid
expansion is zero. Consequently, an outer expansion, valid outside the jet, is assumed
as

ψ(x, y;R) = 0 + δ2(R)ψ2(x, y) + . . . . (A 2)

In order to satisfy the inner boundary conditions, the following inner expansion, valid
within the jet, is assumed:

ψ(x, y;R) = R−1/2Ψ1(x, Y ) + R−1Ψ2(x, Y ) + . . . (A 3)

where Y = R1/2y. The equation for Ψ1 is

Ψ1Y Y Y +Ψ1xΨ1Y Y −Ψ1Y Ψ1xY = 0, (A 4)

and the boundary conditions are

Ψ1Y (x, 0) = 0, −Ψ1x(x, 0) = Vw(x) and Ψ1Y (x,∞) = 0, (A 5)

where Vw is the normal velocity at the wall.
A similarity solution for Ψ1 has been found by Cohen et al. (1992). Accordingly,

Ψ1(x, Y ) = x1−bf(η) where η = (1− b)Y /xb. (A 6)

The reduced equation for f is

f′′′ + ff′′ + γf′2 = 0, (A 7)

where

γ =
2b− 1

1− b , (A 8)
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Figure 19. (a) First and (b) third derivatives of second order viscous mean stream function
calculated for three values of γ.

and the appropriate boundary conditions are

f′(0) = f′(∞) = 0 and f(0) = f0, (A 9)

where

f0 =
xbVw(x)

b− 1
. (A 10)

The self-similar solutions differ from one another only in the constant γ. According
to its value the solutions can be divided into three cases: suction when γ > 2, the
Glauert solution with γ = 2 and blowing when 1 < γ < 2.

Second-order outer problem

The first-order inner viscous solution induces a correction in the outer inviscid
solution. Matching of the outer expansion with the first-order inner viscous solution
yields δ2(R) = R−1/2 and ψ2(x, 0) = Ψ1(x,∞) = x1−bf(∞) = x1−b. In addition, the
upstream condition for ψ2 is that ψ2(x, 0) = 0 for x < 0. Thus, the solution of ψ2,
which satisfies the Laplace equation subjected to the above boundary conditions, is

ψ2(x, y) = Re
[
(x+ ıy)1−b]+ a Im

[
(x+ ıy)1−b] , (A 11)

where Re and Im denote the real and imaginary parts, respectively, and

a = − cot [π(1− b)] . (A 12)
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The second-order outer solution found by Plotkin (1970) for the Glauert wall jet
(b = 3/4) is a member of this family of solutions with a = −1.

Second-order jet solution

The equation for Ψ2 is

Ψ2Y Y Y +Ψ1xΨ2Y Y −Ψ1Y Ψ2xY +Ψ2xΨ1Y Y −Ψ2Y Ψ1xY = 0. (A 13)

The boundary conditions at the wall are Ψ2(x, 0) = Ψ2Y (x, 0) = 0. The third outer
boundary condition Ψ2Y (x,∞) = a(1−b)x−b is obtained by matching with the second-
order outer solution. In the search for similarity solutions, the form Ψ2(x, Y ) = g(η)
is assumed and the resulting second-order inner problem is

g′′′ + fg′′ +
3b− 1

1− b f
′g′ = 0, (A 14)

with the boundary conditions

g(0) = g′(0) = 0, g′(∞) = a. (A 15)

The equation has been solved numerically using a fourth-order Runga–Kutta sub-
routine. The results for g′ and g′′′, which are used in obtaining the effect of the mean
flow divergence on the growth of the disturbance, are shown in figures 19(a) and
19(b), respectively, for γ = 1.5, 2 and 3.
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